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Syntactic foams are attractive for applications that require materials with high impact strength
and low thermal conductivities. Because syntactic foams are manufactured by dispersing
hollow microspheres in a resinous matrix, their characteristics are functions of the type and
relative amounts of these materials. In this work, a discussion of an experimental approach to
measure the thermal conductivity of three-phase syntactic foams (hollow carbon microspheres
in a porous APO-BMI binder, analysis of the data and the comparison to predictive models are
presented. The thermal conductivity of three-phase syntactic foams is measured using a
Holometrix c© steady-state heat flow meter. The experimental data are found to be accurate to
within a reasonable range of experimental error and are compared to three of the more reliable
predictive models that have been used successfully to estimate the thermal conductivity of
similar foams. It is observed that the model predictions at lower temperatures are more
accurate as compared to those at higher temperatures. Also, that a model based on the concept
of self-consistent field theory better predicts the thermal conductivity of syntactic foams than
one based on resistance-in-series. Sensitivity studies indicate a strong dependency of the
thermal conductivity of the three-phase foams on the thermal conductivity of the carbon used
in the microspheres. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
Plastic foams are lightweight materials consisting of at
least two phases, a solid polymer phase and a gaseous
phase. The presence of the gaseous phase provides the
foam with certain desirable characteristics such as low
density and low thermal conductivity, while the poly-
meric phase provides structure to the foam. To further
enhance the thermo-physical properties of the foam a
third hollow material is added, which gives rise to the
class of three-phase composite foams. Syntactic foams
are a special class of composite foams and consist of
hollow microspheres, called fillers, in a resinous ma-
trix, called the binder [1]. Microspheres may be made
from polymers, ceramics, or metals. The matrix mate-
rial may be thermosetting resins such as epoxy resins,
polyimide resins, asphalt, or thermoplastic resins such as
polyethylene [1].

∗Author to whom all correspondence should be addressed.

This work focuses on three-phase syntactic foams that
are composed of hollow carbon microspheres as the filler,
APO-bismaleimide (APO-BMI) (Honeywell FM&T,
Kansas City, MO) resin as the binder and air-voids
within the binder matrix as the third phase. Since the
microspheres and air-voids are distributed randomly
throughout the polymer matrix, the thermo-physical prop-
erties are independent of the orientation of the foam
(isotropic).

A number of techniques are available to measure ther-
mal conductivity of different materials. These techniques
are classified as stationary or non-stationary. The station-
ary methods that employ a guarded heat flow meter are the
most popular methods to measure thermal conductivity
of low conductivity materials [2]. The specific exper-
imental apparatus used in this work is a Holometrix c©

TCA-200LT-A guarded heat flow meter [3]. The range
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of temperatures that is investigated is between 273 K and
473 K.

For heterogenous materials, the concept of a pure ther-
mal conductivity is not realistic. However, when conduc-
tion is the main source of heat transfer, an effective thermal
conductivity may be defined [4–8]. The effective thermal
conductivity represents the ratio of the heat transferred
across a bulk sample of the material under consideration
to the temperature difference across the sample. In foams,
apart from conduction, radiation and convection may also
occur due to the presence of the gas phase. These phenom-
ena also need to be considered when estimating an effec-
tive thermal conductivity. Thus a knowledge of the exact
mode of heat transfer in the foams is necessary for model-
ing thermal conductivity in foams. In general, heat transfer
in foams is more complex due to the presence of the gas
phase. A large volume of work has been done on mod-
eling the thermal conductivity of solid composites. One
of the simplest models is the series/parallel model based
on the analogy of thermal resistance to electrical resis-
tance [4]. Agari and Uno [10] modified the series/parallel
model to account for the arrangement of the filler in the
matrix. Their predictions are quite accurate for graphite
filled composites [10]. Cheng and Vachon proposed a
model based on the electrical resistance analogy. In their
work, they assume that the geometric shape of the dis-
continuous phase in the sample is described by a parabola
[11]. Maxwell [12] proposed self-consistent field theory
to estimate properties of composite materials. The use of
this theory is found to be accurate for two-phase systems
in which one phase is present in a very small amount.
Hashin [7] and Benveniste [8] have developed models for
two-phase composites based on theory of a self-consistent
field. Felske [6] extended the self-consistent field theory
model to two-phase syntactic foams.

At low temperatures, heat transfer due to radiation in
foams is negligible but at moderate to large temperatures,
the contribution to heat flow due to thermal radiation is
not insignificant; this effect affects the accuracy of the
prediction of the thermal conductivity especially in the
case of highly porous open-celled foams [13]. Others [4,
5, 14, 15] have modeled the contribution due to radiation
as a diffusive process. Contribution to heat transfer due to
convection is very small in foams.

Models of the effective thermal conductivity of three-
phase foams are not available in the open literature. This
work introduces a procedure to model the effective ther-
mal conductivity of three-phase foams by calculating
an equivalent thermal conductivity for the microspheres
phase, and one for the combined binder and filler phases.
The final effective thermal conductivity of the foam is cal-
culated using the predictive models of Cheng and Vachon,
Eucken, and Leach.

The paper is organized as follows. Section 2 describes
the experimental setup of the Holometrix c© TCA-200LT-A

guarded heat flow meter. Section 3 introduces three exist-
ing models to predict the thermal conductivity of foams.
Section 4 presents the experimental data and compares
the experimental thermal conductivity to the predictions
of the models. Lastly, Section 5 summarizes the results
and identifies future work.

2. Measuring the thermal conductivity
The experimental methods to measure thermal conduc-
tivity are classified as either stationary or non-stationary
methods. The basic difference is that the former method
requires the sample to be at a stationary state. Guarded,
one-specimen, or two-specimen flow meters are stationary
methods while hot-wire, flash radiometry, and transient
plane source methods are non-stationary methods. Both
stationary and non-stationary methods have been used to
measure the thermal conductivity of foams [16–20].

This work employs the principles of a stationary
guarded heat flow meter to measure the thermal conduc-
tivity of three-phase syntactic foams. In the heat flow
meter, a sample of the material whose thermal conductiv-
ity is to be measured is placed between two conducting
plates and a constant temperature difference is applied
across the sample. If the heat flux across the sample and
the temperature difference are measured then the thermal
conductivity can be determined.

2.1. Experimental approach
A number of techniques are available to measure thermal
conductivity of different materials. These techniques are
classified as stationary or non-stationary. Some examples
of non-stationary techniques include: 1) Flash radiometry
and 2) the Hot-wire method. In flash radiometry, physi-
cal properties such as the thermal diffusivity and specific
heat capacity of the material are required. Since these
properties are not known a priori for the samples used in
this work, flash radiometry cannot be used. The hot-wire
technique is based on measuring the temperature rise of a
sample across which an electrically heated wire is passed.
This wire acts as a line heat source to the sample. The
change in temperature with time is used to calculate the
thermal conductivity [21]. While this technique is suit-
able for measuring low thermal conductivity, accuracy
becomes an issue when large temperature gradients are
present. In addition, tests by Davis [21] have shown that
the hot-wire method may be very inaccurate since a con-
stant heat output over the length of the wire is assumed.

2.2. The guarded heat flow meter
The guarded heat flow meter technique is based on
Fourier’s law of heat conduction [2]. Fourier’s law states
that the rate of heat conduction through a material is
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directly proportional to the temperature gradient across
the material. Consider a material with two opposite pla-
nar surfaces at temperatures, T1 and T2, respectively, with
T2 > T1. The second law of thermodynamics tells us that
heat flows from surface at temperature T2 to the surface
at temperature T1. Then, the rate of heat conduction, q,
across the two surfaces is given by,

q = −k
dT

dz
= −k

(T1 − T2)

z
, (1)

where q is the heat flux across the sample in W m−2, k
is the thermal conductivity with units of W m−1K−1, �T
is the temperature difference across the sample in degrees
Kelvin, and z is the distance in meters between surfaces 1
and 2.

Another quantity which is useful is the thermal resis-
tance, Rs , of the sample. It is defined as a ratio of the
distance between the two plates to the thermal conductiv-
ity [2] ,

Rs ≡ z

k
= T2 − T1

q
(2)

The thermal resistance has units of m2 K W−1.
In a guarded heat flow meter, a sample of the material

whose thermal conductivity is to be measured is placed
between two conducting plates and a constant temperature
difference is applied across the sample. The temperatures
of both plates are controlled by a differential controller.
Using the above two equations, the thermal conductivity
at different temperatures can be calculated.

Since, by definition, composite materials consist of at
least two distinct materials, thermal conductivity of com-
posite materials is a function of the thermal conductivities
of its individual constituents. Moreover, the thermal con-
ductivity of composite materials is also dependent on the
internal structure, i.e. the position and alignment of the in-
dividual constituents. Therefore, for composite materials,
such as foams, the concept of a thermal conductivity is
not valid. However, the concept of an equivalent thermal
conductivity for the material may be used if the mecha-
nism for heat transfer is mainly conduction. In such a case,
however, the thermal resistance defined in Equation 2 is
some non-linear function of �T and q, that is determined
experimentally.

Initially, the guarded heat flow meter is calibrated us-
ing samples whose thermal conductivities are known at
different temperatures. From the known values of the ther-
mal conductivities, the thermal resistances can be found.
When the samples are actually tested, knowing the ratio
of the temperature difference across the sample to heat
flow permits the sample resistance to be estimated from
the calibration and in-turn the thermal conductivity can
be calculated.

Figure 1 A schematic of the test section in the Holometrix c© TCA-200LT-A
guarded heat flow meter.

2.3. Experimental procedure
The thermal conductivity analyzer consists of a cylindri-
cal test section with two parts [3] a schematic of which
is shown in Fig. 1. The upper part can be moved pneu-
matically but the lower part is fixed. The sample is placed
in the sample holder inside the lower part. The recom-
mended pressure to the upper part is about 500 kPa. The
upper part includes a heat sink separated by insulation
from a copper plate. The copper plate is heated electri-
cally and acts as the upper plate heater. Thermocouples
are provided to measure the temperature of the sample
and the temperature of the lower copper plate. The lower
part also has a copper plate, which acts as the lower plate
heater. The lower plate heater is maintained at about 298 K
higher temperature than the upper plate heater while a
temperature difference of 30 K is maintained across the
sample, Thus, the direction of heat flow is upwards. There
is a heat flux transducer to measure the heat transferred
to the sample. A cylindrical guard heater surrounds the
sample assembly. The guard heater is maintained at a tem-
perature close to the mean sample temperature to avoid
radial heat losses. There are heat sinks below the lower
plate and around the sample. A 50% by volume solution
of ethylene-glycol and water is circulated through the heat
sinks to maintain the temperatures.

The accuracy of the water bath that controls the tem-
perature of the ethylene glycol-water mixture is 1 K. This
is especially important for low temperature experiments.
Moisture that condenses on the test surfaces during the
experiment may distort the results. To prevent this, an in-
verted bell jar is placed over the test section isolating it
from the ambient conditions. This chamber is filled with
an inert, dry gas such as nitrogen or argon to prevent
moisture from forming inside the chamber. The thermo-
couple temperature measurements are automatically col-
lected and stored in a dedicated computer.

The heat flow meter is calibrated using samples pro-
vided by Holometrix c©. The calibration samples are
0.0125 m thick Pyrex, 0.00625 m thick Pyrex, and
0.0125 m thick Vespel. The thermal conductivities of
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these materials are known. These samples are individ-
ually placed in the sample holder and tested at the desired
range of temperatures, which in this project, are between
273 K and 473 K in increments of 25 K. Based on the
measurements, the system is calibrated using calculated
values of the sample resistance that are a function of the
temperature difference across the sample and the heat flux
through the sample.

Once the calibration file has been generated, the sample
is tested. The sample has a diameter of about 50 mm and
thickness of about 6 to 6.5 mm. The sample is coated with
a Dow-Corning heat sink compound to prevent heat losses
where the sample touches the upper and lower plates. The
sample is tested over the same temperature range in which
the calibration was made.

Analysis of the test data requires that the sample re-
sistance be determined by comparing the data collected
during the experiment to the data obtained during calibra-
tion. Knowing the thermal conductivities of the calibration
samples at different temperatures, a relationship can be es-
tablished between the thermal resistance and the ratio of
the temperature difference across the sample and the heat
flux through it, which in turn can be used to calculate the
thermal resistance of the test sample. The thermal conduc-
tivity can then be calculated from the thermal resistance
using Equation 2.

3. Thermal conductivity models
For heterogenous materials such as foams, the thermal
conductivity is an average property of a sample, or an ef-
fective thermal conductivity. Thus, the thermal conductiv-
ity is a function of not only the temperature of the material
but also the properties of the sample, specifically, the den-
sity of the sample. Any mathematical model to estimate
the thermal conductivity of foams must relate the density
of the foam to the thermal conductivity. In addition, if the
foam is highly porous, radiative heat transfer effects must
be accounted for.

3.1. Heat transfer in foams
Heat transfer through foams may occur due to a com-
bination of conduction, radiation, and convection. The
conductive heat transfer is the most dominant while con-
vective heat transfer is usually negligible except in the
case of highly porous foams [13]. In the present work,
heat transfer due to convection is neglected.

The primary mechanism for heat transfer through foams
is conduction. Conduction takes place through the solid
and gaseous phases. Since the thermal conductivity of the
gaseous phase is low (∼0.029 W m−1K−1 at 298 K), the
gaseous phase provides the maximum resistance to heat
flow due to conduction. Most of the models for thermal
conductivity of composites are conduction models [4].

Figure 2 Illustration of the rearrangement of the discontinuous phase in
the Cheng-Vachon series model.

In porous materials, particularly those with a large per-
centage of voids, radiative heat transfer plays an impor-
tant role [5, 13]. Thus, any model to estimate the thermal
conductivity of these materials cannot neglect the contri-
bution due to radiation. Radiative heat transfer may be
modeled as a diffusive process if the optical thickness,
τ0 is large (>2). The optical thickness can be calculated
from the actual thickness, t, and the extinction coefficient,
β (the fraction of incident radiation which is scattered or
absorbed [22] ). That is,

τ0 ≡ βt

where t is in meters, and β has units of m−1 Foams are
generally optically thick [4] . In this work, the radiative
heat transfer is modeled as a diffusive process using the
Rosseland equation [22].

3.2. Conductive heat transfer
An overview of three of the more common models that
can be used to estimate the effective thermal conductiv-
ity by conductive heat transfer are presented. The first
model, called Cheng-Vachon model [11] assumes a nor-
mal distribution of the discontinuous phase in the foam.
The other model, contributed by Eucken [23], is based on
self-consistent field theory.

3.2.1. Resistances in series model
Cheng and Vachon [11] propose a model for thermal
conductivity using the analogy between heat flow and
electrical flow. They modeled the discontinuous phase in
the composite as a parabolic function. Then, a unit cell of
the composite is sectioned into differential elements that
are perpendicular to the direction of heat flow. Assuming
that heat flows perpendicular to the differential elements,
a relationship is developed that is based on the selected
geometry. In this work, the Cheng-Vachon model used to
estimate the effective thermal conductivity is given by
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[11],

keff = R−1
e = 2√

C(kd − kc)

× arctan

(
B

2

√
C(kd − kc)

kc + B(kd − kc)

)
+ 1 − B

kc
(3)

B =
√

3vd

2
; C = 4

B

where keff is the effective thermal conductivity of the
foam, Re is the thermal resistance per unit thickness of the
sample, ksolid is the thermal conductivity of the solid phase,
kd is the thermal conductivity of the discontinuous phase,
vd is the volume fraction of the discontinuous phase, and
C and B are parameters that are a function of vd .

3.2.2. Self consistent field theory
A large amount of the research on modeling of compos-
ites has focused on the use of self-consistent field theory.
Self-consistent field theory can be used to determine the
effective thermal conductivity of the composite provided
the individual pure thermal conductivities are known. A
brief overview, taken from [6, 7], is provided as this work
requires an understanding of this theory.

Consider a sample of a composite material suspended in
a homogenous medium having the same thermal conduc-
tivity as the composite. Then, imposing the same tempera-
ture difference across the composite and the homogenous
medium the effective thermal conductivity is calculated
as the ratio of the average heat flow to the average tem-
perature gradient across the composite. For a temperature
gradient applied to a composite, the heat flux flowing
through the composite, based on self-consistent field the-
ory, is given by,

q = keff∇T (4)

where q is the heat flux, ∇T is the temperature gradi-
ent, and keff is the effective thermal conductivity of the
medium. This approach has been used to determine other
effective properties for instance, an effective electrical
conductivity and an effective magnetic permeability [7].
Hashin’s equation can be used to determine the effective
thermal conductivity of the hollow carbon microspheres
[7],

kcmb = kc

(
1 + va

kc
kc−ka

+ va
3

)
(5)

where kcmb is the effective thermal conductivity, kc is
the thermal conductivity of the carbon in the wall of the

microsphere, ka is the thermal conductivity of air, and va

is the volume fraction of air in the microsphere.
Maxwell’s relationship based on the assumption of a

unidirectional heat flow can be used to determine the
effective thermal conductivity of the binder and micro-
sphere phases [12],

ksolid = kcmb
kbinder + 2 kcmb − 2vbinder(kcmb − kbinder)

kbinder + 2 kcmb + vbinder(kcmb − kbinder).

(6)

Note that this equation uses the result of Equation 5.
Eucken proposes the following model to estimate the

effective thermal conductivity of porous materials [23],

keff = ksolid


1 + 2va

(
1−Q1
1+2Q1

)
1 − va

(
1−Q1
1+2Q1

)

 (7)

where

Q1 = ksolid

ka

and the meaning of the variables are unchanged.
In the case of low density two-phase foams, Leach

provides the following expression [4],

keff = kair + 2

3

(
ρfoam

ρsolid

)
ksolid (8)

3.3. Radiative heat transfer
The models presented in Section 3.2 do not account for ra-
diative heat transfer, which in the case of porous materials
may be almost as important as conductive heat transfer.
In this work, the Rosseland equation [15] will be used to
model the heat transfer due to radiation.

Heat transfer due to radiation is attributed to the emis-
sion of photons. When a photon is emitted, its motion
may cause it to strike another particle and then become
scattered. Inside a foam, the part that is at a higher temper-
ature emits photons that strike the surface of other parts
of the foam and scatter. If the mean free path of the pho-
tons between collisions is much smaller compared to the
dimensions of the foam, the mechanism of heat transfer
can be modeled as a diffusion process [15]. The radiative
heat transfer can then be calculated as follows [15, 22],

qr = 16σ T 3

3β

(
∂T

∂x

)
(9)

where qr is the radiative heat flux, β is the extinction co-
efficient which is the reciprocal of the mean free path, T
is temperature, x is the distance from the heat source, and
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σ is the Stefan-Boltzmann constant. The only unknown
in the above equation is the extinction coefficient. The ex-
tinction coefficient may be determined experimentally by
using Fourier Transform Infra-Red (FTIR) spectroscopy
for open cell foams [16]. Glicksman also provides a model
for the extinction coefficient for closed cell foams based
on the structure of the cell wall [5]. In the current work,
since the interstitial voids are interconnected they cannot
be treated as closed cell foams. Hence, a suitable open
cell model developed by Wei [16] is used.

β = 42.038ρ f + 121.55 (10)

where ρ f is the density of the foam in kg m−3, and β

is the extinction coefficient in cm−1. Suppose that the
radiative thermal conductivity, kr , can be defined in a
similar manner as pure conductivity. That is,

qr = kr
∂T

∂x
, (11)

Substitution of Equations 9 and 11 and rearrangement
give the radiative thermal conductivity as,

kr = 16σ T 3

3β
(12)

To summarize, the approach used in this work to rep-
resent heat transfer due to conduction and radiation is as
follows:

1. In the case of heat conduction, self-consistent field
theory is applied [7, 12]. The microsphere wall is assumed
to be the matrix and the trapped air is assumed to be the
spheroidal inclusion. Equation 5 for a sphere inside a ma-
trix may be used [7] to determine the thermal conductivity
of the carbon microspheres.

2. The effective thermal conductivity of the solid ma-
terial (binder and filler) is calculated assuming there is
no air present. Equation 6 is applied since the amount of
binder in the samples is very small.

3. Once the thermal conductivity of the solid (filler
and binder) is determined the foam is treated as a two-
phase material and the effective thermal conductivity of
this pseudo-two-phase material is determined using three
different approaches, series-parallel model Equation 3,
self-consistent theory Equation 7 and Equation 8, which is
most commonly used to estimate the thermal conductivity
of two-phase foams with high porosity.

Suppose q is the conductive heat flow through the sam-
ple and qr is the radiative heat flow. Then the total flow

qtot across the sample is,

qtot = q + qr

qtot = ktot
∂T

∂x

ktot
∂T

∂x
= keff

∂T

∂x
+ kr

∂T

∂x
ktot = keff + kr

Thus, the radiative and conductive thermal conductivities
can be added to obtain the overall effective thermal con-
ductivity [13]. The contribution of the heat transferred due
to radiation is calculated using Equation 12.

4. Results and discussion
4.1. Statistical analysis
Real data always contain some error. To determine the
range of the errors in the experimental data, an uncertainty
analysis is carried out [24]. The uncertainty in the error
is found to be approximately, ± 3% (Appendix B). The
samples are composed of different densities of the carbon
microspheres and different volume fractions of carbon in
the foams (see Table III of Appendix A). Samples numbers
1, 5, 9, 13 will be used for illustrative purposes. The
thermal conductivity of these samples and their associated
error bars are shown in Fig. 3.

An analysis of variances (ANOVA) [25] is carried out
for the different experiments on a given sample. The re-
sults of the ANOVA for sample # 13 is shown in the
Table I. Each run consists of 9 temperature values be-
tween 273 K and 473 K. The ANOVA results for the other
samples can be found in Table IV in Appendix A.

Based on the sum squared errors for the different treat-
ments, it is concluded that there is little variation within
the experiments. This is to be expected since the corre-
sponding values of the different experiments are within
±1 K of the set-point temperature. In contrast, there is a
large variation in each treatment since the values within
each experiment are at different conditions.

There are two degrees of freedom for the treatments
since there are three runs and twenty-four degrees of free-
dom for the individual readings within each experiment.
The F-statistic is found to be 0.54989 which is less that
the value (1.47) found from the F-statistic tables [25]. The
hypothesis in the ANOVA is that the means of different
experiments are the same. This claim is true if the com-
puted F-statistic is less than the critical F-statistic. Thus,
the ANOVA results show that the mean of each of the
three experiments on sample # 13 is the same.

The F-test provides no information about the variance
of the data. To estimate the bounds on the data, a χ-
squared test is conducted on different experiments of the
same sample at each temperature point, which provides
a bound for the data at each temperature point. Using
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Figure 3 Thermal conductivity of example samples.

the results of the χ-squared test a confidence interval is
constructed for a given sample over the temperature range
of interest. Fig. 4 shows the thermal conductivity for the
entire temperatures range along with the uncertainty and
the 95% confidence interval.

4.2. Model predictions
The values of the thermal conductivities of the con-
stituents, i.e. APO-BMI resin and carbon are required

T AB L E I . ANOVA of Samples # 1, 5, 9, 13

Sample # Source
Sum
squares DOF Variance F-stat

1 Treatments 0.00009 2 0.00045 0.09443
Error 0.01101 24 0.00004 –
Total 0.01100 26 – –

5 Treatments 0.00048 2 0.00114 0.21813
Error 0.02660 24 0.00024 –
Total 0.02705 26 – –

9 Treatments 0.00044 2 0.00022 0.09861
Error 0.08528 24 0.00021 –
Total 0.05327 26 – –

13 Treatments 0.00375 2 0.00314 0.54989
Error 0.08192 24 0.00188 –
Total 0.08567 26 – –

to calculate thermal conductivity of the foam. However,
it is not possible to prepare a solid piece of APO-BMI
because of out-gassing of the resin during curing. Hence,
the value of 0.307 W m−1K−1, taken from the open liter-
ature for maleimides is used [26] . Additionally, accurate
measurements of the thermal conductivity of the phenolic
carbon powder are not obtainable due to equipment avail-
ability. To overcome this, the thermal conductivity value
of phenolic carbon at 298 K, 4.6 W m−1K−1, is used [28].

Fig. 5 compares the models’ prediction of thermal con-
ductivity to the experimental data. The results indicate
that: (1) the predictions are quite reasonable at lower tem-
peratures for all foams; (2) at higher temperatures, only
the Eucken model gives satisfactory predictions of the
thermal conductivity; and (3) based on the relative error
(see Table V), the Eucken model gave the best predictions
followed by the Cheng-Vachon model, and then the foam
model.

The foam model was proposed for two-phase foams.
It however, does not account for the internal structure of
the foam. Similarly, the Cheng-Vachon model is based on
a resistance-in-series model and considers the discontin-
uous phase to be distributed parabolically in the foam.
Thus, it too does not account for the internal structure.
This lack of accounting for the internal structure may be
the reason for the relatively poor performance of these two

T AB L E I I . Errors (%) for the different models for sample #1

Thermal Percentage error Model predictions
Temperature conductivity
K W/m-K Cheng-Vachon Eucken Leach Cheng-Vachon Eucken Leach

273 0.248 9.67 −2.16 5.21 0.224 0.254 0.251
323 0.292 16.74 5.29 12.99 0.243 0.277 0.274
373 0.338 22.65 11.63 19.47 0.261 0.299 0.295
423 0.385 27.58 17.00 24.88 0.279 0.309 0.316
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Figure 4 Thermal conductivity.

models (foam model and the Cheng-Vachon model), es-
pecially at higher temperatures. The Eucken model, based
on self-consistent field theory, was originally proposed for
solid composites. One possible source of error in the pre-
dictions of the Eucken model is that the air-voids may not
necessarily remain spherical during formation of the foam
but may become elongated and create a greater resistance
to heat flow in the longitudinal direction.

In addition, the model used to estimate the contribution
due to the radiation has been developed for high poros-
ity, low density foams whereas the foams studied in this
work are comparatively higher density and low porosity.
Therefore, there errors in the model predictions at higher
temperatures might also be due errors in calculating the
effective thermal conductivity due to radiation (kr ).

5. Summary
In this work, the thermal conductivity of three-phase syn-
tactic foams with phenolic-based carbon microspheres as
a filler and amorphous bismaleimide (APO-BMI) resin as
a binder was measured experimentally using a guarded
heat flow meter. This work represents the first attempt

to measure and model the thermal conductivity of three-
phase syntactic foams. A statistical analysis of the ex-
perimental data supported the repeatability and thus the
efficacy of a guarded heat flow meter to measure the ther-
mal conductivity of low conductive materials accurately
[2]. The tap density and the relative amount of the filler
(carbon microballoons) in the foam were identified as pa-
rameters that can be manipulated to control the thermal
properties of the foams.

The experimental thermal conductivity data were com-
pared to the predictions of three well accepted models. It
was found that all the models used provided satisfactory
predictions at lower temperatures. The Eucken model pro-
vided the best estimates of the three models chosen for
comparison, with errors ranging from ± 0.04 % at low
temperatures to ± 35% at higher temperatures. A sensi-
tivity study showed that the thermal conductivity of the
foam is a strong function of the thermal conductivity of
the carbon that is used in the manufacture of the phenolic-
based carbon microspheres. This suggests that the thermal
conductivity of the carbon itself needs to be characterized
more accurately to better predict the thermal conductivity
of three-phase foams.
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Figure 5 Model predictions of thermal conductivity.

Nomenclature

β Extinction coefficient, m−1

δQ The error in measurement of heat flow, W
δT The error in measurement of temperature, K
δt The error in measurement of sample thickness, mm
B A parameter in the Cheng-Vachon equation, func-

tion of vd

C A parameter in the Cheng-Vachon equation, func-
tion of vd

ka Thermal conductivity of air, W m−1K−1

kcmb Thermal conductivity of the carbon microspheres,
W m−1K−1

kd Thermal conductivity of the discontinuous phase,
W m−1K−1

ksolid Thermal conductivity of the solid phase,
W m−1K−1

kteflon Thermal conductivity of teflon, W m−1K−1

Q1 Ratio of the thermal conductivity of continuous
phase to the discontinuous phase

Qedge Edge heat loss, W
qr Radiative heat flux, W m−2

Rs Thermal resistance, m2 K W−1

Re Thermal resistance per unit thickness of the sample,
m K W−1

T Temperature, K
tteflon Thickness of teflon insulation between sample and

guard heater, m
va Volume fraction of air
vd Volume fraction of the discontinuous phase
q Heat flux across the sample, W m−2

z Thickness of the sample, m
ρ f Density of the foam, kg m−3

σ Stefan-Boltzmann constant, W m−2K−4

τ0 Optical thickness
k Thermal conductivity, W m−1K−1

kr Radiative thermal conductivity, Wm−1K−1

ktot Total effective thermal conductivity the sample,
W m−2

Q The total heat flowing from the heater plate to the
upper plate, W

Qmeas The heat measured by the heat transducer in the
heat flow meter, W

qtot Total heat flux flowing through the sample, W m−2

t Actual thickness, m
q Conductive heat flux flowing through the sample,

W m−2
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Appendix A: Sample properties and model
predictions

T A B L E I I I . The specifications of the samples used in the experiment

Sample #
Thickness
(cm)

Diameter
(cm)

Mass
(g)

Foam Density
(g/cc)

Tap Density
(g/cc)

Carbon
Microballoon
volume fraction

1 0.632 5.460 5.0800 0.343 0.1969 0.656
2 0.636 5.466 5.0840 0.342 0.1969 0.653
3 0.677 5.473 5.3100 0.334 0.1611 0.588
4 0.636 5.479 5.4027 0.360 0.2148 0.697
5 0.636 5.460 5.0813 0.341 0.1620 0.595
6 0.632 5.466 5.0839 0.343 0.1782 0.603
7 0.642 5.473 5.3122 0.350 0.1944 0.646
8 0.636 5.479 5.4027 0.360 0.2106 0.632
9 0.646 5.464 4.5851 0.303 0.1540 0.599

10 0.642 5.468 4.5887 0.304 0.1694 0.648
11 0.640 5.469 4.6536 0.308 0.1848 0.594
12 0.643 5.471 4.9611 0.328 0.2002 0.655
13 0.644 5.250 4.9900 0.358 0.1450 0.685
14 0.642 5.465 5.0519 0.335 0.1595 0.680
15 0.640 5.465 4.9696 0.331 0.1740 0.625
16 0.635 5.467 4.7475 0.318 0.1885 0.581
Average 0.642 5.455 5.0180 0.335 0.1806 0.634
Std deviation 0.011 0.055 0.2688 0.019 0.0209 0.037
Variance 0.0001 0.003 0.072 0.001 0.0004 0.001

T AB L E I V. Analysis of variances

Sample # Source Sum squared DOF Variance F-stat Sample # Source Sum squared DOF Variance F-stat

2 Treatments 0.00008 2 0.00002 0.05041 10 Treatments 0.00475 2 0.00234 1.1422
Error 0.01311 24 0.00054 – Error 0.04987 24 0.00217 –
Total 0.01320 26 – – Total 0.0546 26 – –

3 Treatments 0.00001 2 0.00005 0.01412 11 Treatments 0.00617 2 0.00303 0.93899
Error 0.0089 24 0.00037 – Error 0.07879 24 0.00328 –
Total 0.0091 26 – – Total 0.08501 26 – –

4 Treatments 0.00092 2 0.00046 0.59486 12 Treatments 0.0180 2 0.00897 0.42128
Error 0.01857 24 0.00077 – Error 0.51262 24 0.02136 –
Total 0.01950 26 – – Total 0.08567 26 – –

6 Treatments 0.00082 2 0.00041 0.40912 14 Treatments 0.00240 2 0.00121 0.78255
Error 0.0241 24 0.00117 – Error 0.03677 24 0.00152 –
Total 0.0249 26 – – Total 0.03916 26 – –

7 Treatments 0.00009 2 0.00005 0.04392 15 Treatments 0.00259 2 0.00128 1.01246
Error 0.0238 24 0.00101 – Error 0.03067 24 0.00129 –
Total 0.0239 26 – – Total 0.0332 26 – –

8 Treatments 0.00007 2 0.00036 0.38506 16 Treatments 0.00032 2 0.00016 0.25557
Error 0.0225 24 0.00094 – Error 0.01500 24 0.00062 –
Total 0.0232 26 – – Total 0.01531 26 – –

T AB L E V. Percentage errors for the different models for samples 2 to 16

Thermal Percentage error Model predictions
Conductivity

Sample # Temperature K W/m-K Cheng-Vachon Eucken Leach Cheng-Vachon Eucken Leach

2 273 0.275 −8.46 −30.20 −17.02 0.234 0.281 0.253
323 0.303 4.30 −15.89 −3.62 0.255 0.308 0.276
373 0.340 16.20 −2.18 9.03 0.275 0.335 0.298
423 0.384 30.00 14.18 23.88 0.295 0.361 0.321
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T AB L E V. Percentage errors for the different models for samples 2 to 16

Thermal Percentage error Model predictions
Conductivity

Sample # Temperature K W/m-K Cheng-Vachon Eucken Leach Cheng-Vachon Eucken Leach

3 273 0.216 −8.41 −30.13 −16.97 0.232 0.281 0.253
323 0.253 −0.50 −21.71 −8.84 0.260 0.308 0.276
373 0.334 17.75 −0.31 10.69 0.282 0.335 0.298
423 0.379 22.29 4.69 15.47 0.302 0.361 0.320

4 273 0.211 −11.04 −33.30 −19.82 0.224 0.281 0.253
323 0.263 3.05 −17.42 −5.00 0.254 0.308 0.276
373 0.319 13.71 −5.23 6.31 0.277 0.335 0.298
423 0.374 21.12 3.26 14.20 0.291 0.361 0.321

5 273 0.198 −17.67 −41.07 −26.94 0.233 0.279 0.251
323 0.233 −8.47 −31.11 −17.43 0.253 0.306 0.274
373 0.271 −0.29 −22.01 −8.85 0.272 0.331 0.295
423 0.324 10.17 −9.83 2.34 0.291 0.356 0.316

6 273 0.216 −8.46 −30.20 −17.02 0.234 0.281 0.253
323 0.266 4.30 −15.89 −3.62 0.255 0.308 0.276
373 0.328 16.20 −2.18 9.03 0.275 0.335 0.298
423 0.421 30.00 14.18 23.88 0.295 0.361 0.321

7 273 0.216 −6.09 −28.27 −18.82 0.229 0.277 0.257
323 0.253 −2.08 −19.96 −5.78 0.259 0.304 0.268
373 0.334 18.74 −0.31 12.05 0.271 0.335 0.294
423 0.379 19.65 3.20 15.47 0.305 0.367 0.320

8 273 0.211 −5.35 −4.85 −10.33 0.222 0.221 0.233
323 0.263 3.24 −2.19 −5.00 0.254 0.268 0.276
373 0.319 12.52 −5.23 −12.53 0.279 0.335 0.358
423 0.374 3.17 3.26 14.20 0.362 0.361 0.321

9 273 0.203 −18.15 −32.89 −27.88 0.240 0.270 0.260
323 0.264 0.77 −12.18 −7.79 0.262 0.296 0.284
373 0.335 15.70 4.35 8.21 0.282 0.320 0.307
423 0.430 29.77 20.10 23.41 0.302 0.344 0.330

10 273 0.222 −15.92 −22.58 −17.86 0.258 0.272 0.262
323 0.284 0.78 −5.12 −0.91 0.281 0.298 0.286
373 0.367 16.97 11.94 15.57 0.304 0.323 0.309
423 0.421 22.32 17.57 21.06 0.327 0.347 0.332

11 273 0.209 −18.52 −20.81 −10.74 0.248 0.252 0.231
323 0.266 −2.10 −7.27 −7.67 0.271 0.285 0.286
373 0.336 9.35 3.85 7.82 0.304 0.323 0.309
423 0.372 6.73 6.74 10.68 0.347 0.347 0.332

12 273 0.215 −19.62 −12.52 −9.40 0.257 0.242 0.235
323 0.298 5.57 −0.04 3.96 0.281 0.298 0.286
373 0.372 7.38 13.17 16.76 0.344 0.323 0.309
423 0.467 15.09 17.23 20.37 0.397 0.387 0.372

13 273 0.203 −18.15 −32.89 −50.81 0.240 0.270 0.307
323 0.264 0.77 −12.18 −23.87 0.262 0.296 0.327
373 0.335 15.70 4.35 −3.51 0.282 0.320 0.346
423 0.430 29.77 20.10 14.83 0.302 0.344 0.366

14 273 0.211 −32.82 −4.60 −36.61 0.280 0.221 0.288
323 0.265 −15.46 4.79 −18.11 0.306 0.253 0.313
373 0.325 −2.30 12.46 −4.17 0.332 0.284 0.338
423 0.341 −1.05 12.18 −2.68 0.345 0.300 0.350

15 273 0.220 5.17 0.24 5.77 0.208 0.219 0.207
323 0.248 0.78 −0.94 −25.43 0.246 0.251 0.311
373 0.369 6.42 20.23 7.33 0.345 0.294 0.342
423 0.488 16.24 14.94 19.56 0.409 0.415 0.393

16 273 0.223 6.16 1.53 2.56 0.209 0.220 0.217
323 0.285 −7.56 4.28 −10.03 0.306 0.273 0.313
373 0.359 4.77 18.95 5.87 0.342 0.291 0.338
423 0.411 12.91 8.59 11.67 0.358 0.375 0.363
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T AB L E VI . Thermal conductivity of all samples in the temperature range 0-200K

Thermal conductivity, Wm−1K−1

Temperature, K 273 298 323 348 373 398 423 448 473

Sample #

1 0.2483 0.2702 0.2924 0.3181 0.3380 0.3599 0.3599 0.4064 0.4273
1 0.2752 0.2840 0.3032 0.3257 0.3403 0.3610 0.3610 0.4053 0.4217
3 0.1988 0.2220 0.2417 0.2623 0.2751 0.2927 0.2927 0.3275 0.3405
4 0.2798 0.2971 0.3182 0.3403 0.3592 0.3828 0.3828 0.4373 0.4608
5 0.1963 0.2219 0.2460 0.2708 0.2956 0.3208 0.3208 0.3709 0.3965
6 0.2161 0.2411 0.2662 0.2956 0.3280 0.3696 0.3208 0.4211 0.4517
7 0.2160 0.2523 0.2534 0.2708 0.3340 0.3464 0.3464 0.4273 0.4393
8 0.2109 0.2360 0.2627 0.2918 0.3186 0.3455 0.3455 0.4012 0.4292
9 0.2033 0.2374 0.2637 0.2932 0.3347 0.3723 0.3723 0.4638 0.4573
10 0.2223 0.2504 0.2836 0.2985 0.3665 0.3834 0.3834 0.4926 0.4423
11 0.2089 0.2375 0.2658 0.3212 0.3357 0.3497 0.3497 0.4990 0.6281
12 0.2149 0.2575 0.2979 0.2984 0.3717 0.4549 0.4549 0.4988 0.5433
13 0.1109 0.1367 0.1624 0.3120 0.2349 0.2938 0.2938 0.4962 0.6144
14 0.1234 0.1563 0.1854 0.1888 0.2464 0.3072 0.3072 0.4509 0.3806
15 0.2158 0.2482 0.2895 0.2142 0.3689 0.3862 0.3862 0.5138 0.5175
16 0.2469 0.2566 0.2872 0.3409 0.3270 0.3378 0.3378 0.3747 0.3997

Appendix B: Uncertainty analysis
Since, the uncertainty value is not fixed, it may be treated
as a statistical variable. The sources of uncertainty in the
measurement include:

1. Uncertainty in the heat flow through the sample.
The heat flux transducer is located below the sample.
Thus, what is measured is the heat that is being transferred
to the sample from the lower heater. This heat may not
be the actual heat that passes through the sample as there
may be losses. The losses may be due to contact resistance,
radial losses, etc.

(a) Heat loss due to contact resistance: When heat is
transferred from the heater to the sample, there may
be some losses due to improper contact between the
surface of the heater and the sample surface. Thus,
errors in the heat flux passing through the sample
may exist. To reduce these losses, a Dow-Corning c©

heat sink compound is applied to the surfaces of the
sample in contact with the heaters (top and bottom).

(b) Edge losses: There may be heat losses from the
sample to the guard heater in spite of the presence
of a teflon ring around the sample. Ideally, the tem-
perature of the sample and that of the guard heater
are equal. In practice they are not, due to radial heat
losses across the guard ring. These radial losses are
similar to radial flow across a cylinder and the fol-
lowing formula may be used to estimate the heat
lost to the guard ring.

Qedge = 2πkteflontteflon�T

ln(r2/r1)

where Qedge is the heat loss to be calculated, kteflon

is the thermal conductivity of the insulation be-
tween the sample and the guard heater, tteflon is the
thickness of the insulation, �T is the temperature
difference between the sample and the guard heater,
while r2 and r1 are the outer and inner radii, respec-
tively of the teflon ring.

2. The thickness of the sample is measured using a pair
of digital Vernier callipers. The least count of this instru-
ment is 0.01 mm. Thus, the errors in the measurement
of the thickness and diameter of the sample are ± 0.01
mm. This error is propagated in the measurement of the
cross-sectional area and the volume of the sample. The
foam density measurement therefore has an error of ± 1.

3. Errors in the measurement of the heat-flux.
The transducer that measures the heat flux through the
sample may introduce some error. In previous studies by
[13], the measurement errors have been estimated to be
± 3.

4. Errors in the temperature measurements. The ther-
mocouples used to measure the temperature of the sample
cannot be calibrated individually. Errors associated with
this are assumed to be of the order of ±1 K.

The total uncertainty in the measurement of power is
given by [24],

δQ

Q
=

√
δQ2

edge + δQ2
meas

Q2
. (13)
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The total uncertainty in the measurement of the thermal
conductivity is the root mean squared sum of these uncer-
tainties,

δkeff

keff
=

√(
δQ

Q

)2

+
(

δt

t

)2

+
(

δT

T

)2

(14)

where Q is the power, t is the thickness, and T is the
temperature.
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